(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,,设为椭圆与轴负半轴的交点,且,求实数的取值范围.
(本题满分12分) 如图,平面⊥平面,其中为矩形,为梯形,∥,⊥,==2=2,为中点. (Ⅰ) 证明; (Ⅱ) 若二面角的平面角的余弦值为,求的长.
设,,且, (Ⅰ)求的值; (Ⅱ)设三内角所对边分别为且,求在上的值域.
已知半径为6的圆与轴相切,圆心在直线上且在第二象限,直线过点. (Ⅰ)求圆的方程; (Ⅱ)若直线与圆相交于两点且,求直线的方程.
已知函数. (1)求函数的最小正周期和单调递减区间; (2)若,求的值.
(本小题满分12分)已知函数f(x)=x3-ax2-3x. (1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围; (2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.