如图,在平面直角坐标系xOy中,椭圆C:的离心率为,短轴长是2.(1)求a,b的值;(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当时,求k的取值范围.
已知抛物线C:y2=2px(p>0)过点A(1,-2). (1)求抛物线C的方程,并求其准线方程; (2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.
如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点. (1)求证:BD⊥AB1; (2)求二面角B—AD—B1的余弦值.
已知数列{an}中,a1=2,an=2-(n≥2,n∈N*). (1)设bn=,n∈N*,求证:数列{bn}是等差数列; (2)设cn=(n∈N*),求数列{cn}的前n项和Sn.
假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为,记此时教室里敞开的窗户个数为X. (1)求X的分布及数学期望; (2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
已知函数f(x)=sin 2x-cos2x-,x∈R. (1)求函数f(x)的最小值和最小正周期; (2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值.