已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.
设函数.(1)写出函数f(x)的最小正周期及单调递增区间;(2)当时,函数f(x)的最大值与最小值的和为,求的值.
已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,.(1)分别求数列,的通项公式,;(2)设数列的前项和为,求的表达式,并求的最小值.
已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.
设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.
已知,其中向量,,.在中,角A、B、C的对边分别为,,.(1)如果三边,,依次成等比数列,试求角的取值范围及此时函数的值域;(2) 在中,若, ,求的面积.