如图5(1)中矩形中,已知,, 分别为和的中点,对角线与交于点,沿把矩形折起,使平面与平面所成角为,如图5(2).(1) 求证:;(2) 求与平面所成角的正弦值.
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2, 点(1,)在该椭圆上. (Ⅰ)求椭圆C的方程; (Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下: [40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8. (Ⅰ)完成样本的频率分布表;画出频率分布直方图. (Ⅱ)估计成绩在85分以下的学生比例; (Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01) 频率分布表频率分布直方图
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD. (Ⅰ)求证:EF//平面PAD; (Ⅱ)求三棱锥C—PBD的体积.
已知公比大于1的等比数列{}满足:++=28,且+2是和的等差中项.(Ⅰ)求数列{}的通项公式; (Ⅱ)若=,求{}的前n项和.
设函数,记的导函数,的导函数,的导函数,…,的导函数,. (1)求; (2)用n表示; (3)设,是否存在使最大?证明你的结论.