(本小题满分12分)已知是定义在上的偶函数,且当时,.(1)求当时,的解析式;(2)作出函数的图象,并指出其单调区间(不必证明).
设是方程的两个实根,则的最小值是多少?
已知,若求的范围。
已知函数.设数列满足,,数列满足,. (Ⅰ)用数学归纳法证明;(Ⅱ)证明.
已知抛物线的焦点为是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于.过作垂直于轴,垂足为,的中点为. (1)求抛物线方程; (2)过作,垂足为,求点的坐标; (3)以为圆心,为半径作圆.当是轴上一动点 时,讨论直线与圆的位置关系.
已知双曲线,若的上支顶点为,且上支与直线交于点,以为焦点,为顶点,开口向下的抛物线通过点,当的斜率在区间上变化时,求实数的取值范围.