有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为. (1)求的概率;(2)求的分布列和数学期望.
已知是第二象限的角,,求和.
已知函数的图象在同一周期内最高点的坐标为,最低点的坐标为.(1)求函数的解析式;(2)求函数的单调递减区间.
已知:.(1)求的值;(2)求的值.
已知函数.(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求的值.
椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,点P(1,)和A、B都在椭圆E上,且+=m(m∈R).(1)求椭圆E的方程及直线AB的斜率;(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.