已知向量a="(1,2),b=(cos" α,sin α),设m=a+tb(t为实数).(1)若α=,求当|m|取最小值时实数t的值;(2)若a⊥b,问:是否存在实数t,使得向量a-b和向量m夹角的余弦值为,若存在,请求出t;若不存在,请说明理由.
已知函数. (1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率; (2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.
(本小题满分12分)已知圆:.问在圆上是否存在两点关于直线对称,且以为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.
(本小题满分12分)如图,四棱锥中,底面为平行四边形,,底面. (1)证明:; (2)若求二面角的余弦值.
(本小题满分12分)如图,已知圆心坐标为的圆与轴及直线分别相切于两点,另一圆与圆外切,且与轴及直线分别相切于两点. (1)求圆和圆的方程;(2)过点作直线的平行线,求直线被圆截得的弦的长度.
(本小题满分12分)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用).已建仓库的底面直径为12m,高4m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积(底面面积不计); (3)哪个方案更经济些?