(本小题满分12分)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用).已建仓库的底面直径为12m,高4m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积(底面面积不计);(3)哪个方案更经济些?
如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF//平面PCD;(2)平面BEF⊥平面PAD
已知椭圆G:+y2=1.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点. (1)求椭圆G的焦点坐标和离心率; (2)将|AB|表示为m的函数,并求|AB|的最大值.
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。 (1)求动点的轨迹方程; (2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使(O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由
已知圆以为圆心且经过原点O. (1)若,写出圆的方程; (2)在(1)的条件下,已知点的坐标为,设分别是直线和圆上的动点,求的最小值及此时点的坐标.
已知拋物线的顶点在原点,它的准线过双曲线=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,拋物线与双曲线交于点P,求拋物线方程和双曲线方程.