(本小题满分12分)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用).已建仓库的底面直径为12m,高4m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积(底面面积不计);(3)哪个方案更经济些?
在四棱锥中,底面为矩形,侧棱底面,且,过棱的中点,作交于点,连接 (Ⅰ)证明:; (Ⅱ)求异面直线与所成角的余弦值及二面角的余弦值.
设条件:实数满足;条件:实数满足且命题“若,则”的逆否命题为真命题,求实数的取值范围.
已知幂函数的图象经过点. (1)求函数的解析式,并画出图象; (2)证明:函数在上是减函数.
求证:.
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,当每辆车的月租金定为x元时,租赁公司的月收益为y元. (1)试写出x,y的函数关系式(不要求写出定义域); (2)租赁公司某月租出了88辆车,求租赁公司的月收益多少元?