已知f(n)=1+n∈N),g(n)=2(-1)(n∈N).(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.
(本小题满分14分) 如图,正三棱柱中,为 的中点,为边上的动点. (Ⅰ)当点为的中点时,证明DP//平面; (Ⅱ)若,求三棱锥的体积.
(本小题满分14分) 已知,设函数
2,4,6
(1)求的最小正周期及单调递增区间;
(本小题满分12分) 在△ABC中,角A、B、C所对边分别为a,b,c,已知, (1)求角C的大小; (2)若最长边的边长为l0 ,求△ABC的面积.
(本小题满分12分) 设递增等差数列的前项和为,已知,是和的等比中项。 (1)求数列的通项公式; (2)求数列的前项和
(本小题满分12分) 已知函数对于任意, 总有, 并且当, ⑴求证为上的单调递增函数 ⑵若,求解不等式