如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.图①图②(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.
如图甲,设正方形的边长为,点分别在上,并且满足,如图乙,将直角梯形沿折到的位置,使点在平面上的射影恰好在上.(1)证明:平面;(2)求平面与平面所成二面角的余弦值.
市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车相互独立. 假设李生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班.假设道路、、上下班时间往返出现拥堵的概率都是,道路、上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到.(1)求李生小孩按时到校的概率;(2)李生是否有八成把握能够按时上班?(3)设表示李生下班时从单位乙到达小学丙遇到拥堵的次数,求的均值.
在平面直角坐标系中,以为始边,角的终边与单位圆的交点在第一象限,已知.(1)若,求的值;(2)若点横坐标为,求.
已知数列{}的前项和为(为常数,N*).(1)求,,;(2)若数列{}为等比数列,求常数的值及;(3)对于(2)中的,记,若对任意的正整数恒成立,求实数的取值范围.
已知向量=(,1),=(,1),R.(1)当时,求向量 +的坐标;(2)若函数|+|2为奇函数,求实数的值.