在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.(1)求证:平面ADC1⊥平面BCC1B1;(2)求该多面体的体积.
已知直线l:kx-y+1+2k=0
(1)证明:l经过定点;(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;(3)若直线不经过第三象限,求k的取值范围.
已知向量a=(sin θ,-2)与b=(1,cos θ)互相垂直,其中θ∈(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=3cos φ,0<φ<,求cos φ的值.
在△ABC,已知2·=||·||=3BC2,求角A、B、C的大小
已知a=,b=,其中0<α<β<π.(1)求证:a+b与a-b互相垂直;(2)若ka+b与ka-b(k≠0)的长度相等,求β-α.