如图,直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.(1)求证:C1E∥平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?
在中,分别为角的对边,的面积S满足(Ⅰ)求角A的值; (Ⅱ)若,设角B的大小为x,用x表示c,并求c的取值范围.
已知函数f(x)=|x-2|,g(x)=-|x+3|+m.(1)解关于x的不等式f(x)+a-1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.
已知直线l经过点,倾斜角α=,圆C的极坐标方程为.(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(2)设l与圆C相交于两点A、B,求点P到A、B两点的距离之积.
如图,A、B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.
已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W.(1)求曲线W的方程,并讨论W的形状与的值的关系;(2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.