已知函数对任意的恒有成立.(1)当b=0时,记若在)上为增函数,求c的取值范围;(2)证明:当时,成立;(3)若对满足条件的任意实数b,c,不等式恒成立,求M的最小值.
在数列中,,,. (1)证明数列是等比数列; (2)设数列的前项和,求的最大值
若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。 (I)求函数的解析式; (II)求函数的单调递增区间
解的不等式
选修4—5:不等式选讲 (Ⅰ)若与2的大小,并说明理由; (Ⅱ)设是和1中最大的一个,当
选修4-4:极坐标与参数方程选讲 已知曲线的极坐标方程为,直线的参数方程是:. (Ⅰ)求曲线的直角坐标方程,直线的普通方程; (Ⅱ)将曲线横坐标缩短为原来的,再向左平移1个单位,得到曲线曲线,求曲线上的点到直线距离的最小值.