如图,四棱锥中,面,、分别为、的中点,.(1)证明:∥面;(2)证明:
平面直角坐标系中,已知曲线,将曲线上所有点横坐标,纵坐标分别伸长为原来的倍和倍后,得到曲线(1)试写出曲线的参数方程;(2)在曲线上求点,使得点到直线的距离最大,并求距离最大值.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点.(1)求证:△≌△;(2)若,求长.
已知函数(其中为常数).(Ⅰ)当时,求函数的单调区间;(Ⅱ) 当时,设函数的3个极值点为,且. 证明:.
在平面直角坐标系中,过点的直线与抛物线相交于A、B两点.设, (1)求证:为定值(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由.
如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E,F分别为PC,CD的中点,DE = EC(1)求证:平面ABE⊥平面BEF;(2)设PA = a,若平面EBD与平面ABCD所成锐二面角,求a的取值范围。