过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.(1)求椭圆的离心率;(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
甲、乙两地相距s km , 汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元。把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;为了使全程运输成本最小,汽车应以多大速度行驶?
方程的两根都大于2,求实数的取值范围。
已知二次函数满足,,求的取值范围。
已知,求的最大值。
求的最小值。