已知函数定义在(―1,1)上,对于任意的,有,且当时,。(1)验证函数是否满足这些条件;(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;(3)若,求方程的解。
已知函数f(x)=aln x-ax-3(a∈R).(1)若a=-1,求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2 (f′(x)是f(x)的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;(3)求证:×…×< (n≥2,n∈N*)
已知向量m=(ex,ln x+k),n=(1,f(x)],m∥n(k为常数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,F(x)=xexf′(x).(1)求k的值及F(x)的单调区间;(2)已知函数g(x)=-x2+2ax(a为正实数),若对于任意x2∈[0,1],总存在x1∈(0,+∞),使得g(x2)<F(x1),求实数a的取值范围.
已知函数f(x)=,x∈(1,+∞).(1)求函数f(x)的单调区间;(2)函数f(x)在区间[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,请说明理由.
已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2-tx-2.(1)求函数f(x)的解析式;(2)求函数f(x)在[n,n+2](n>0)上的最小值;(3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
已知函数f(x)=ax+ln x,g(x)=ex.(1)当a≤0时,求f(x)的单调区间;(2)若不等式g(x)< 有解,求实数m的取值范围.