已知数列{an}满足a1+a2+…+an=n2(n∈N*).(1)求数列{an}的通项公式;(2)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使,,成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由.
(本题10分)设,其中,如果,求实数的取值范围.
(本题8分)已知函数f(x)=(logx)2-logx+5,x∈[,4],求f(x)的最大值及最小值.
已知:函数,其中.(Ⅰ)若是的极值点,求的值;(Ⅱ)求的单调区间;(Ⅲ)若在上的最大值是,求的取值范围.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式.其中,为常数.已知销售价格为元/千克时,每 日可售出该商品千克.(Ⅰ)求的值;(Ⅱ)若该商品的成本为元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入万元,以后每场比赛门票收入比上一场增加万元.(Ⅰ)求总决赛中获得门票总收入恰好为万元的概率;(Ⅱ)设总决赛中获得的门票总收入为,求的分布列.