已知各项均为正数的等比数列{an}的公比为q,且0<q<.(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.(ⅰ)求公比q;(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.
在抛物线上求一点,使该点到直线的距离为最短,求该点的坐标
椭圆上有一点M(-4,)在抛物线(p>0)的准线l上,抛物线的焦点也是椭圆焦点. (1)求椭圆方程; (2)若点N在抛物线上,过N作准线l的垂线,垂足为Q距离,求|MN|+|NQ|的最小值.
设抛物线()的焦点为F,经过点 F的直线交抛物线于A、B两点.点C在抛物线的准线上,且BC∥X轴.证明直线AC经过原点O.
已知抛物线(为非零常数)的焦点为,点为抛物线上一个动点,过点且与抛物线相切的直线记为. (1)求的坐标; (2)当点在何处时,点到直线的距离最小?
如图,正方形的边长为1,,分别为边,上的点.当的周长为2时,求的大小.