已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.(1)求a及k的值;(2)设数列{bn}的通项bn=,证明数列{bn}是等差数列,并求其前n项和Tn.
已知向量=,=,定义函数f(x)=·.(1)求函数f(x)的表达式,并指出其最大值和最小值.(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.
在△ABC中,内角A,B,C的对边分别是a,b,c,且a2=b2+c2+ab.(1)求A.(2)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.
已知函数f(x)=sinωxcosωx-cos2ωx,其中ω为使f(x)能在x=时取得最大值的最小正整数.(1)求ω的值.(2)设△ABC的三边长a,b,c满足b2=ac,且边b所对的角θ的取值集合为M,当x∈M时,求f(x)的值域.
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度.(2)求sinα的值.
已知函数f(x)=sinωx-sin2+(ω>0)的最小正周期为π.(1)求ω的值及函数f(x)的单调递增区间.(2)当x∈时,求函数f(x)的取值范围.