某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
如图,边长为2的正方形绕边所在直线旋转一定的角度(小于)到的位置.(1)若,求三棱锥的外接球的表面积;(2)若为线段上异于,的点,,设直线与平面所成角为,当时,求的取值范围.
如图,四棱锥中,底面是平行四边形,平面,垂足为,在线段上,,,,是的中点,四面体的体积为.(1)求异面直线与所成角的余弦值;(2)棱上是否存在一点,使,若存在,求的值,若不存在,请说明理由.
如图,四棱锥中,底面为平行四边形,,,底面.(1)证明:平面平面; (2)若二面角为,求与平面所成的正弦值.
如图,在七面体中,四边形是边长为2的正方形,平面,平面,且,,与交于点,点在上,且(1)求证:平面;(2)求七面体的体积.
已知:定义在R上的函数,对于任意实数a, b都满足,且,网当. (Ⅰ)求的值;(Ⅱ)证明在上是增函数;(Ⅲ)求不等式的解集.