如图,一次函数y=kx+b(k≠ 0)与反比例函数(m≠0)的图象有公共点A(1,2),D(a,-1).直线 轴于点N(3,0),与一次函数和反比例 函数的图象分别交于点B,C.(1) 求一次函数与反比例函数的解析式;(2) 求△ABC的面积。(3) 根据图象回答,在什么范围时,一次函数的值大于反比例函数的值。
(1)计算. (2)解不等式组:
【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数的图象和性质.①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数的最小值.【解决问题】用上述方法解决“问题情境”中的问题,直接写出答案.
已知、均为锐角,且,。求的度数。小聪、小明、小慧三位同学都通过构造一个几何图形,使这个代数计算问题快速、简捷地得到了解决,请你思考他们的方法,选择其中一个图形,解答上述问题。(也可以自己构造一个不同的图形,并完成解答)
如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.(1)理解与作图:在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.(2)计算与猜想:求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?(3)启发与证明:如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.
已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比.请你计算这个“W”图案的高与宽的比到底是多少?