如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=, M, N是直线x=4上的两个动点,且·=0.(1)求椭圆的方程;(2)求MN的最小值;(3)以MN为直径的圆C是否过定点?
已知函数f(x)=3x-. (1)若f(x)=2,求x的值; (2)判断x>0时,f(x)的单调性; (3)若3tf(2t)+mf(t)≥0对于t∈恒成立,求m的取值范围.
设a>0且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.
已知函数f(x)=ax2-2ax+2+b(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2. (1)求a,b的值; (2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.
已知幂函数f(x)=x(m2+m)-1(m∈N*),经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.
函数f(x)=,若关于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五个不同的实数解,求a的取值范围.