如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=, M, N是直线x=4上的两个动点,且·=0.(1)求椭圆的方程;(2)求MN的最小值;(3)以MN为直径的圆C是否过定点?
选修4—5: 不等式选讲. (Ⅰ)设函数.证明:; (Ⅱ)若实数满足,求证:
选修4—4:坐标系与参数方程. 坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C的极坐标方程; (Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.
选修4—1:几何证明选讲. 已知圆内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一点,AE为圆O的切线. (Ⅰ)求∠BAE 的度数; (Ⅱ)求证:
设函数,其中为自然对数的底数. (Ⅰ)已知,求证:; (Ⅱ)函数是的导函数,求函数在区间上的最小值.
设到定点的距离和它到直线距离的比是. (Ⅰ)求点的轨迹方程; (Ⅱ)为坐标原点,斜率为的直线过点,且与点的轨迹交于点,,若,求△的面积.