在△ABC中,a=,b=,B=45°.求角A、C和边c.
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.
某公司为了解用户对其产品的满意度,从,两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); (Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
中,是上的点,平分,面积是面积的2倍.(Ⅰ)求;(Ⅱ)若,,求和的长.
选修4-5:不等式选讲若,且.(Ⅰ)求的最小值;(Ⅱ)是否存在,使得?并说明理由.
选修4-4:坐标系与参数方程 在直角坐标系中,直线:=2,圆:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系. (Ⅰ)求,的极坐标方程; (Ⅱ)若直线的极坐标方程为,设与的交点为, ,求的面积.