已知函数(1)写出函数的最小正周期和单调递增区间;(2)若且,求的值
为了美化环境,构建两型社会,市城建局打算在广场上建造一个绚丽多彩的矩形花园,中间有三个完全一样的矩形花坛,每个花坛面积均为294平方米,花坛四周的过道均为2米,如图所示,设矩形花坛的长为,宽为,整个矩形花园面积为。(1)试用表示S;(2)为了节约用地,当矩形花坛的长为多少米时,新建矩形花园占地最少,占地多少平米?
(本题满分共12分)如图,在中,为边上高,,,沿将翻折,使得,得到几何体。(1)求证:;(2)求与平面成角的正切值。
(本题满分共12分)某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100头猪,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100头猪的感染数,得到如下资料:
(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为用的形式列出所有的基本事件, 其中视为同一事件,并求的事件A的概率。
已知,且。(1)求的值;(2)当时,求函数的值域。
(本小题满分13分)某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持米的距离,其中a为常数且,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒) . (1)将y表示为x的函数;(2)求车队通过隧道所用时间取最小值时车队的速度.