等比数列{cn}满足cn+1+cn=10·4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn.(1)求an,Sn;(2)数列{bn}满足bn=,Tn为数列{bn}的前n项和,是否存在正整数m(m>1),使得T1,Tm,T6m成等比数列?若存在,求出所有m的值;若不存在,请说明理由.
(本小题满分13分) (1)若(),试求实数的范围; (2)设实数,函数, 试求函数的值域。
(本小题满分12分) 已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点). (1)数列的通项公式; (2)若,记,求证:.
(本小题满分12分) 如左图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下: (1)求二面角B-AC-D的大小; (2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。
(本小题满分12分) 已知:,,函数. (1)化简的解析式,并求函数的单调递减区间; (2)在△ABC中,分别是角A,B,C的对边,已知,△ABC的面积为,求的值.
(本小题满分12分) 已知函数在点x=1处的切线与直线垂直,且f(-1)=0,求函数f(x)在区间[0,3]上的最小值。