如图所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB.(1)求证:EF∥平面BC1D;(2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.
已知动圆M经过点A(3,0),且与直线l:x=﹣3相切,求动圆圆心M的轨迹方程.
根据下列条件写出抛物线的标准方程: (1)准线方程是y=3; (2)过点P(﹣2,4); (3)焦点到准线的距离为.
点A、B分别是椭圆+=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF. (1)求P点的坐标; (2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
已知过点A(﹣1,1)的直线与椭圆=1交于点B、C,当直线l绕点A(﹣1,1)旋转时,求弦BC中点M的轨迹方程.
已知直线l:y=kx+1与椭圆+y2=1交于M、N两点,且|MN|=.求直线l的方程.