已知函数,,函数的图象在点处的切线平行于轴.(1)确定与的关系;(2)试讨论函数的单调性; (3)证明:对任意,都有成立。
在中,,,, 求:(1),; (2)的值.
(本小题12分)数列首项,前项和与之间满足 (1)求证:数列是等差数列 (2)求数列的通项公式 (3)设存在正数,使对于一切都成立,求的最大值.
(本题12分).如图,四棱柱中,侧棱⊥底面ABCD,AB//DC,AB⊥AD,AD=CD=1,=AB=2,E为棱的中点. (Ⅰ)证明 (Ⅱ)求二面角的正弦值. (Ⅲ)设点M在线段上,且直线AM与平面所成角的正弦值为,求线段AM的长.
(本题12分)如图,在三棱锥A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,动点D在线段AB上. (1)求证:平面COD⊥平面AOB; (2)当OD⊥AB时,求三棱锥C-OBD的体积.
(本题12分)如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点. (Ⅰ)证明:EF∥平面PAD; (Ⅱ)求四棱锥P—ABCD的表面积S.