某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4m.这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后AB′交DC于点P.当△ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.(1)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;(2)若要求最节能,应怎样设计薄板的长和宽?(3)若要求制冷效果最好,应怎样设计薄板的长和宽?
在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?
设、是两个不共线的非零向量() (1)记那么当实数t为何值时,A、B、C三点共线? (2)若,那么实数x为何值时的值最小?
设锐角三角形ABC的内角A,B,C的对边分别为a,b,c, a=2bsinA (1)求B的大小; (2)求的取值范围.
已知,且, (1)求; (2)若与的夹角为,求的值。
在,求 (1)BC的值; (2)若点