已知x、y为共轭复数,且(x+y)2-3xyi=4-6i,求x、y.
(本小题满分14分)已知函数()(Ⅰ)求函数的单调区间;(Ⅱ)当时,求在上的最大值和最小值();(Ⅲ)求证:.
(本小题满分13分)已知中心在原点,对称轴为坐标轴的椭圆的一个焦点在抛物线的准线上,且椭圆过点,直线与椭圆交于两个不同点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线的斜率为,且不过点,设直线,的斜率分别为,求证:为定值;(Ⅲ)若直线过点,为椭圆的另一个焦点,求面积的最大值.
(本小题满分12分)已知等差数列单调递增,且 ,都在函数的图象上.(Ⅰ)求数列的通项公式和前项和为;(Ⅱ)设,求数列的前项和.
(本小题满分10分)学校足球队进行罚点球训练,队员在一轮训练中最多可罚4次,并规定,一旦命中该队员即停止此轮练习,否则一直罚到第4次为止. 已知一选手罚点球的命中率为0.8,求一轮练习中,该选手的实际罚球次数X的分布列,并求X的数学期望.
【选修4—4:坐标系与参数方程】(本小题满分10分)已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合.曲线C的极坐标方程为,直线l的参数方程为(t为参数,t∈R).试在曲线C上求一点M,使它到直线l的距离最大.