(本小题满分10分)学校足球队进行罚点球训练,队员在一轮训练中最多可罚4次,并规定,一旦命中该队员即停止此轮练习,否则一直罚到第4次为止. 已知一选手罚点球的命中率为0.8,求一轮练习中,该选手的实际罚球次数X的分布列,并求X的数学期望.
在极坐标系中,求曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离.
已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,求|CP|.
在极坐标系中,求圆ρ=2cosθ的垂直于极轴的两条切线方程.
在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,求a的值.
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos,它们相交于A、B两点,求线段AB的长.