如图所示,AB是☉O的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且BD·BE=BA·BF,求证:(1)EF⊥FB;(2)∠DFB+∠DBC=90°.
求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.
计算: (1);(2); (3);(4)
已知函数. (1)若曲线在点处的切线与直线垂直,求实数的值. (2)若,求的最小值; (3)在(Ⅱ)上求证:.
设正项数列都是等差数列,且公差相等,(1)求的通项公式;(2)若的前三项,记数列数列的前n项和为
已知向量. (1)若,求; (2)设的三边满足,且边所对应的角的大小为,若关于的方程有且仅有一个实数根,求的值.