如图,☉O和☉O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连结DB并延长交☉O于点E.证明:(1)AC·BD=AD·AB;(2)AC=AE.
△ABC的内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB。(1)求B;(2)若b=2,求△ABC面积的最大值。
△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(1)求B;(2)若b=2,求△ABC面积的最大值。
设△ABC的内角A,B,C所对的边分别为a,b,c,(a+b+c)(a-b+c)=ac(1)求B(2)若sinAsinC=,求C
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,已知点的坐标为,点在线段的垂直平分线上,且,求的值.
已知椭圆G:.过点(m,0)作圆的切线l交椭圆G于A,B两点.(1)求椭圆G的焦点坐标和离心率;(2)将表示为m的函数,并求的最大值.