已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.(1)求数列{an}的通项公式;(2)若=,设cn=,求数列{cn}的前n项和Tn.
已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性并证明;(3)若对任意的,不等式恒成立,求的取值范围
(本小题满分12分)斜三棱柱中,侧面底面ABC,侧面是菱形,,,,E、F分别是,AB的中点.(1)求证:EF∥平面; (2)求证:CE⊥面ABC.(3)求四棱锥的体积.
(本小题满分12分) 设函数,,(1)若,求取值范围; (2)求的最值,并给出最值时对应的x的值。
(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD
(本小题满分12分)已知两直线l1:x+my+6=0 l2:(m-2)x+3my+2m=0当m为何值时,l1与l2:(1)平行;(2)垂直;