已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.(1)求数列{an}的通项公式;(2)若=,设cn=,求数列{cn}的前n项和Tn.
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例; (2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 附:
χ2=
想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:
(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系? (2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)? (3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)? (4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.
某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x(x取整数)元与日销售量y台之间有如下关系:
(1)画出散点图,并判断y与x是否具有线性相关关系? (2)求日销售量y对销售单价x的线性回归方程; (3)设经营此商品的日销售利润为P元,根据(1)写出P关于x的函数关系式,并预测当销售单价x为多少元时,才能获得最大日销售利润.
在电阻碳含量对于电阻的效应研究中,得到如下表所示的数据:
(1)求出y与x的相关系数并判断相关性; (2)求出电阻y关于含碳量x之间的回归直线方程.
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: 甲厂:
乙厂:
(1)试分别估计两个分厂生产的零件的优质品率; (2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?
附: