在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ-)=.(1)求圆O和直线l的直角坐标方程.(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.
已知是定义在上的偶函数,且时,. (Ⅰ)求,; (Ⅱ)求函数的表达式; (Ⅲ)若,求的取值范围.
已知椭圆与直线相交于两点. (1)若椭圆的半焦距,直线与围成的矩形的面积为8, 求椭圆的方程; (2)若(为坐标原点),求证:; (3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.
数列满足. (1)计算,,,,由此猜想通项公式,并用数学归纳法证明此猜想; (2)若数列满足,求证:.
如图,在圆锥中,已知,⊙O的直径,是的中点,为的中点. (1)证明:平面平面; (2)求二面角的余弦值.
甲、乙两位篮球运动员进行定点投篮,甲投篮一次命中的概率为,乙投篮一次命中的概率为.每人各投4个球,两人投篮命中的概率互不影响. (1)求甲至多命中1个球且乙至少命中1个球的概率; (2)若规定每投篮一次命中得3分,未命中得分,求乙所得分数的概率分布和数学期望.