运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转45°后所得的直线方程.
正方形ABCD中,点O是对角线AC的中点,点P是对角线AC上一动点. (1)如图1,当点P在线段OA上运动时(不与点A、O重合) ,PE⊥PB交线段CD于点E,PF⊥CD于点E. ①判断线段DF、EF的数量关系,并说明理由; ②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论; (2)如图2,当点P在线段OC上运动时(不与点O、C重合),PE⊥PB交直线CD于点E,PF⊥CD于点E.判断(1)中的结论①、②是否成立?若成立,说明理由;若不成立,写出相应的结论并证明.
“亚普”塑料厂每月生产甲、乙两种塑料的信息如下表:
注1:生产乙种塑料每月还需另外支付专用设备维护费20000元. 注2:总成本包括生产成本、排污处理费、专用设备维护费. (1)设该厂甲、乙塑料的每月产量分别为、吨,生产利润分别为y1、y2元(生产利润=总收入-总成本),则y1与的函数关系式为,y2与的函数关系式为; (2)已知该厂每月共生产甲、乙塑料700吨,甲、乙塑料均不超过400吨,求该厂每月生产利润的最大值; (3)皇冠化学用品销售公司负责销售甲种塑料,试销中发现,甲种塑料销售量(吨)与销售价(百元)满足一次函数,营销利润为(百元). ①求营销利润与销售价的函数关系式; ②当销售价定为多少时,销售甲种塑料营销利润的最大,并求此时的最大利润; ③若规定销售价不低于出厂价,且不高于出厂价的200%,则销售甲种塑料营销利润的最大值是多少?
小明和同桌小聪一起合作探索:如图,一架5米长的梯子AB斜靠在铅直的墙壁AC上,这时梯子的底端B到墙角C的距离为1.4米.如果梯子的顶端A沿墙壁下滑0.8米,那么底端B将向左移动多少米? (1)小明的思路如下,请你将小明的解答补充完整: 解:设点B将向左移动x米,即BE=x,则:EC= x+1.4,DC=AC-DC=-0.8=4, 而DE=5,在Rt△DEC中,由EC2+DC2=DE2, 得方程为:,解方程得:, ∴点B将向左移动米. (2)解题回顾时,小聪提出了如下两个问题: ①将原题中的“下滑0.8米”改为“下滑1.8米”,那么答案会是1.8米吗?为什么? ②梯子顶端下滑的距离与梯子底端向左移动的距离能相等吗?为什么? 请你解答小聪提出的这两个问题.
如图,直线l与⊙O相切于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连结DB,且AD=DB.(1)判断直线DB与⊙O的位置关系,并说明理由; (2)若PB=BO,⊙O的半径为4cm,求AC的长.
如图,已知正比例函数y=2x的图像l1与反比例函数y=的图像相交于点A(a,2),将直线l1向上平移3个单位得到的直线l2与双曲线相交于B、C两点(点B在第一象限),与y轴交于点D. (1)求反比例函数的解析式; (2)求△DOB的面积.