设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a,b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.求a,b的值,并求出切线l的方程.
已知函数在处取得极值为. (1)求a、b的值; (2)若有极大值28,求在上的最大值.
如图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且. (1)证明:平面; (2)若,求四棱锥的体积.
已知函数f(x)=sin2x-. (Ⅰ)求f(x)的最小周期和最小值, (Ⅱ)将函数f(x)的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图像.当x时,求g(x)的值域.
甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响. (Ⅰ)求乙获胜的概率; (Ⅱ)求投篮结束时乙只投了2个球的概率.
已知是首项为1,公差为2的等差数列,表示的前项和. (1)求及; (2)设是首项为2的等比数列,公比满足,求的通项公式及其前项和.