一个袋中装有若干个大小相同的黑球、白球和红球,已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.(1)若袋中共有10个球,①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.(2)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于,并指出袋中哪种颜色的球的个数最少.
(本小题满分12分) 已知数列是首项为,公比的等比数列,设,数列满足. (Ⅰ)求的通项公式; (Ⅱ)若对一切正整数恒成立,求实数的取值范围.
(本小题满分12分) 已知函数f(x)=x3-ax2,其中a为实常数. (1)设当x∈(0,1)时,函数y = f(x)图象上任一点P处的切线的斜线率为k,若k≥-1,求a的取值范围 (2)当x∈[-1,1]时,求函数y=f(x)+a(x2-3x)的最大值.
(本小题满分12分) 四棱锥的底面是正方形,侧棱的中点在底面内的射影恰好是正方形的中心,顶点在截面内的射影恰好是的重心. (1)求直线与底面所成角的正切值; (2)设,求此四棱锥过点的截面面积.
(本小题满分12分) 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。 (Ⅰ)求三位同学都没有中奖的概率; (Ⅱ)求三位同学中至少有两位没有中奖的概率.
(本小题满分10分) 如图,在平面直角坐标系中,点在第一象限内,交轴于点, . (1)求的长; (2)记,.(为锐角),求sina,sin的值