现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率.(2)求该射手的总得分X的分布列.
设为坐标原点,已知向量,分别对应复数,且,,.若可以与任意实数比较大小,求,的值.
实数为何值时,复数.(1)为实数;(2)为虚数;(3)为纯虚数;(4)对应点在第二象限.
已知复数对应的点落在射线上,,求复数.
设是虚数是实数,且.(1)求的值及的实部的取值范围.(2)设,求证:为纯虚数;(3)求的最小值.
复数且,对应的点在第一象限内,若复数对应的点是正三角形的三个顶点,求实数,的值.