现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率.(2)求该射手的总得分X的分布列.
已知关于的方程有实数根. (1)求实数,的值; (2)若复数满足,求为何值时,有最小值并求出最小值.
已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.
设为坐标原点,已知向量,分别对应复数,且,,.若可以与任意实数比较大小,求,的值.
实数为何值时,复数. (1)为实数; (2)为虚数; (3)为纯虚数; (4)对应点在第二象限.
已知复数对应的点落在射线上,,求复数.