统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0<x≤120).已知甲、乙两地相距100千米。(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
已知数列的前项和为,,,.(Ⅰ) 求证:数列是等比数列;(Ⅱ) 设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值.
(本小题满分10分)选修4-5:不等式选讲已知,且,若恒成立,(1)求的最小值;(2)若对任意的恒成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数.(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.
(本小题满分10分)选修4—1:几何证明选讲如图所示,PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分线与BC和圆O分别交于点D和E.(1)求证:;(2)求AD·AE的值.
(本小题满分12分)已知函数,,其中.(1)若存在,使得成立,求实数M的最大值;(2)若对任意的,都有,求实数的取值范围.