某公司春节联欢会预设一抽奖活动:在一个不透明的口袋中装入外形一样,号码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望; (2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。(1)求证:AB1//面BDC1;(2)若AA1=3,求二面角C1—BD—C的余弦值;(3)若在线段AB1上存在点P,使得CP面BDC1,试求AA1的长及点P的位置。
甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,求一等品的个数不少于3个的概率。
设函数(1)求的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知,△ABC的面积为的值。
(本小题满分12分)如图,多面体ABCDS中,面ABCD为矩形, , (1)求证:CD; (2)求AD与SB所成角的余弦值; (3)求二面角A—SB—D的余弦值.
设是椭圆上的两点,已知向量,若且椭圆的离心率e=,短轴长为,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由