(本小题满分12分)如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点.(Ⅰ)当时,求平面与平面的夹角的余弦值;(Ⅱ)当为何值时,在棱上存在点,使平面?
在中,角A,B,C所对的边分别为a,b,c, 已知a,b,c成等比数列,且.(Ⅰ)求角B的大小;(Ⅱ)若,求的面积最大值.
抛物线:,直线:交于点,交准线于点.过点的直线与抛物线有唯一的公共点(,在对称轴的两侧),且与轴交于点.(Ⅰ)求抛物线的准线方程;(Ⅱ)求的取值范围.
已知,函数.(Ⅰ)当时,求函数的最小值;(Ⅱ)当时,讨论的图象与的图象的公共点个数.
如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,. (Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.
已知数列满足:,,(),,,分别是公差不为零的等差数列的前三项.(Ⅰ)求的值;(Ⅱ)求证:对任意的,,,不可能成等比数列.