某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3000名初中生、4000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?
如图,三棱锥P—ABC中, PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB. (I) 求证:AB平面PCB; (II) 求异面直线AP与BC所成角的大小; (III)求二面角C-PA-B的大小.
如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE (1)求证:AE⊥平面BCE; (2)求证:AE∥平面BFD; (3)求三棱锥C-BGF的体积。
如图,在四面体ABCD中,O、E分别是BD、BC的中点,(Ⅰ)求证:平面BCD;(Ⅱ)求异面直线AB与CD所成角的余弦值;(Ⅲ)求点E到平面ACD的距离.
如图,已知正三棱柱中,,,点、、分别在棱、、上,且.(Ⅰ)求平面与平面所成锐二面角的大小;(Ⅱ)求点到平面的距离.
如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;(Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面的距离。