已知四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.(1)求证:BE∥平面PDA;(2)若N为线段PB的中点,求证:NE⊥平面PDB.
(本小题满分12分)已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点.(1)若动点满足(其中为坐标原点),求点的轨迹方程;(2)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.
(本小题满分12分)设.(1)若在上存在单调递增区间,求的取值范围;(2)当时,在上的最小值为,求在该区间上的最大值.
(本小题满分12分)在举办的环境保护知识有奖问答比赛中,甲、乙、丙同时回答一道有关环境保护知识的问题,已知甲回答对这道题目的概率是,甲、丙两人都回答错的概率是,乙、丙两人都回答对的概率是.(1)求乙、丙两人各自回答对这道题目的概率.(2)求甲、乙、丙三人中至少有两人回答对这道题目的概率.
(本小题满分12分)如图,四棱锥中,底面为矩形,底面,,点是棱的中点.(1)证明:平面;(2)若,求二面角的平面角的余弦值.
在数列中,,.(1)设, 证明:数列是等差数列;(2)求数列的前项和.