已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.(1)求圆C的圆心轨迹L的方程.(2)求满足条件m=n的点M的轨迹Q的方程.(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.
已知A点坐标为,B点坐标为,且动点到点的距离是,线段的垂直平分线交线段于点.(1)求动点的轨迹C方程.(2)若P是曲线C上的点,,求的最大值和最小值.
已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足(O是坐标原点),若椭圆的离心率等于(1)求直线AB的方程;(2)若三角形ABF2的面积等于,求椭圆的方程.
已知,设命题p:对数函数在R+上单调递减,命题q:曲线与x轴交于不同的两点,如果“”为真,且“”为假,求的取值范围.
已知数列{an}满足a1=1,且an=2an-1+2n.(n≥2且n∈N*).(1)求数列{an}的通项公式;(2)设数列{an}的前n项之和Sn,求Sn.
△ABC中,内角为A,B,C,所对的三边分别是a,b,c,已知,.(1)求;(2)设·,求.