如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD.(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.
已知△ABC的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C的坐标.
已知函数 (I)求曲线处的切线方程; (II)当的取值范围.
如图,已知椭圆到它的两焦点F1、F2的距离之和为4,A、B分别是它的左顶点和上顶点.. (I)求此椭圆的方程及离心率; (II)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程.
甲乙两车间生产同一种产品,各生产40个后,按产品合格与不合格进行统计,甲车间生产的产品合格数为36个,乙车间生产的产品合格数为24个. (1)根据以上数据完成列联表;
(2)试判断是否产品合格与生产车间是否有关?
已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围