同时抛掷15枚均匀的硬币一次(1)试求至多有1枚正面向上的概率;(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等?请说明理由.
(本小题满分12分)已知函数,. (Ⅰ)时,证明:; (Ⅱ),若,求a的取值范围.
已知椭圆的上顶点为,直线交椭圆于两点,设直线的斜率分别为. (1)若时,求的值; (2)若时,证明直线过定点.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率; (Ⅱ)记取出红球的个数为随机变量,求的分布列和数学期望.
(本小题满分12分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且. (1)求证:平面平面; (2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
(本小题满分12分)如图所示,在四边形中,,且,,. (1)求的面积; (2)若,求的长.