如图直角梯形OABC中,,SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz. (Ⅰ)求的大小(用反三角函数表示); (Ⅱ)设 ① ②OA与平面SBC的夹角(用反三角函数表示); ③O到平面SBC的距离. (Ⅲ)设 ① . ②异面直线SC、OB的距离为 . (注:(Ⅲ)只要求写出答案).
某工厂建造一个无盖的长方体蓄水池,其容积为4800,深度为3m,如果池底每1的造价为150元,池壁每1的造价为120元,怎样设计水池的底面长与宽的尺寸才能使总造价最低?最低总造价为多少元?
在中,角A,B,C的对边分别是a,b,c,已知(1)求的周长 (2)求值:的值
已知集合,集合, (1)若,求(2)若,求实数a 的范围
选修4-5:不等式选讲已知函数 (1)解不等式; (2)若不等式的解集为空集,求实数的取值范围.
选修4-4:坐标系与参数方程平面直角坐标系中,已知曲线,将曲线上所有点横坐标,纵坐标分别伸长为原来的倍和倍后,得到曲线(1)试写出曲线的参数方程;(2)在曲线上求点,使得点到直线的距离最大,并求距离最大值.