如图,为圆的直径,点.在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)求四棱锥的体积.
已知()是曲线上的点,,是数列的前项和,且满足,,. (1)证明:数列()是常数数列; (2)确定的取值集合,使时,数列是单调递增数列; (3)证明:当时,弦()的斜率随单调递增
已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形. (1)求椭圆的方程; (2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值; (3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q. (1)将tanq表示为x的函数; (2)求点D的位置,使q取得最大值.
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点. (1)求证:MQ∥平面PAB; (2)若AN⊥PC,垂足为N,求证:MN⊥PD.
已知函数(,是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是, (1)求函数的解析式及其单调增区间; (2)在锐角三角形△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.