选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线,曲线(是参数).求直线的直角坐标方程与曲线的普通方程;若点P在直线上,Q在曲线上,求的最小值.
如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点. (Ⅰ)求点M的轨迹方程; (Ⅱ)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程; (Ⅲ)过的直线与轨迹E交于P、Q两点,求面积的最大值.
(本小题满分12分)数列记 (Ⅰ)求b1、b2、b3、b4的值; (Ⅱ)求数列的通项公式及数列的前n项和
如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。 (1)求证:BM∥平面PAD; (2)在侧面PAD内找一点N,使MN平面PBD; (3)求直线PC与平面PBD所成角的正弦。
在中,角的对边分别为,。 (Ⅰ)求的值; (Ⅱ)求的面积
已知椭圆C的焦点分别为和,长轴长为6,设直线交椭圆C于A、B两点,求线段AB的中点坐标。