某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.
如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为(不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于. (1)求的取值范围;(运算中取) (2)若中间草地的造价为元,四个花坛的造价为元,其余区域的造价为元,当取何值时,可使“环岛”的整体造价最低?
如图,在正三棱柱中,,分别为,的中点. (1)求证:平面; (2)求证:平面平面.
在中,角,,所对的边分别是,,,已知,. (1)若的面积等于,求,; (2)若,求的面积.
已知函数,,,其中,且. ⑴当时,求函数的最大值; ⑵求函数的单调区间; ⑶设函数若对任意给定的非零实数,存在非零实数(),使得成立,求实数的取值范围.
已知函数. (Ⅰ)若,且对于任意恒成立,试确定实数的取值范围; (Ⅱ)设函数, 求证: